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SUMMARY

Objective of this work is the numerical solution of chemically reacting �ows in three dimensions
described by detailed reaction mechanism. The contemplated problems include, e.g. burners with 3D
geometry. Contrary to the usual operator splitting method the equations are treated fully coupled with
a Newton solver. This leads to the necessity of the solution of large linear non-symmetric, inde�nite
systems. Due to the complexity of the regarded problems we combine a variety of numerical methods,
as there are goal-oriented adaptive mesh re�nement, a parallel multigrid solver for the linear systems
and economical stabilization techniques for the sti� problems.
By blocking the solution components for every ansatz function and applying special matrix structures

for each block of degrees of freedom, we can signi�cantly reduce the required memory e�ort without
worsening the convergence. Considering the Galerkin formulation of the regarded problems this is
established by using lumping of the mass matrix and the chemical source terms. However, this technique
is not longer feasible for ‘standard’ stabilized �nite elements as for instance Galerkin least squares
techniques or streamline di�usion. Those stabilized schemes are well established for Navier–Stokes �ows
but for reactive �ows, they introduce many further couplings into the system compared to Galerkin
formulations. In this work, we discuss this issue in connection with combustion in more detail and
propose the local projection stabilization technique for reactive �ows. Beside the robustness of the arising
linear systems we are able to maintain the problem-adapted matrix structures presented above. Finally,
we will present numerical results for the proposed methods. In particular, we simulate a methane burner
with a detailed reaction system involving 15 chemical species and 84 elementary reactions. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this work, recent developments in the design and implementation of �nite element methods
for �ow problems including chemical reactions with large heat release are described. The
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982 M. BRAACK AND TH. RICHTER

emphasize is on the low-Mach number regime including the limit case of incompressible
�ow.
The standard Galerkin �nite element method for �ow problems may su�er due to the

violation of the discrete inf–sup (or Babuska–Brezzi) condition for velocity and pressure
approximation and, in the case of dominating advection or reaction, due to the convective
terms. The streamline-upwind Petrov–Galerkin (SUPG) method, introduced by Brooks and
Hughes [1], and the pressure stabilization (PSPG), introduced in References [2, 3], opened up
the possibility to treat both problems in a unique framework. Additionally to the Galerkin part,
the elementwise residuals are tested against appropriate test functions. This gives the possibility
to use rather arbitrary �nite element approximations of velocity and pressure, including equal-
order pairs.
Despite the success of this classical stabilization approach to incompressible �ows over

the last 20 years, one can �nd in recent papers a critical evaluation of this approach, see,
e.g. References [4, 5]. Drawbacks are basically due to the strong additional coupling between
velocity and pressure in the stabilizing terms. We will show in this work, that additional
couplings are even more critical for reactive �ow when the convective terms of the chemical
species are treated by SUPG.
For incompressible �ow, new methods aim to relax the strong coupling of velocity and

pressure and to introduce symmetric versions of the stabilization terms, see e.g. the global
projection of Codina [6], local projection techniques (LPS) by Becker and Braack [7, 8]
and Braack and Burman [9], or edge stabilization of Burman et al. [5] based on interior
penalty techniques. In this work, we extend the LPS technique to reactive �ow, described
by the compressible Navier–Stokes equations with additional convection–di�usion–reaction
equations for chemical species. The method is applied to combustion problems where strong
heat release enforces a strong coupling between the chemical variables and �ow variables.
This stabilization does not a�ect the inter-species couplings, so that the only coupling between
di�erent species remains due to the zero-order chemical source term. This aspect will be used
in the sparsity pattern of a block matrix in order to reduce the numerical costs substantially.
This allows us to compute combustion problems with about 20 chemical species (and even
more) in 3D using a small PC-cluster using a fully implicit scheme.
In order to illustrate a major di�culty for e�cient computation of reactive �ows includ-

ing many chemical species we consider a single stationary convection–di�usion–reaction for
species yk :

� · ∇yk − div (Dk∇yk)=fk (1)

with a source term fk =fk(T; y1; : : : ; yns) depending on the temperature and other chemical
species y1; : : : ; yns . A pure Galerkin method for seeking a discrete solution, yh; k , reads∫

�
(� · ∇yk�+Dk∇yk∇� − fk�) dx=0 ∀�∈Vh (2)

with an appropriate discrete space Vh. In the corresponding sti�ness matrix, the mass frac-
tions of di�erent chemical species are coupled due to the zero-order term (fk; �), because
fk =fk(T; y1; : : : ; yns). These couplings only include the degrees of freedom corresponding to
the same mesh points when the mass matrix is lumped. The sparsity pattern of the sti�ness
matrix should take this feature into account, see Reference [10]. Now we will show that the
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STABILIZED FINITE ELEMENTS FOR 3D REACTIVE FLOWS 983

application of standard �nite element stabilization techniques introduce further inter-species
couplings which cannot be avoided by mass lumping.
In the interesting case of convection-dominated �ow, the advection term � · ∇yk must be

stabilized. Established methods are of upwind type. In the case of �nite element discretization,
the SUPG method is widely used because it is more accurate than simple upwinding. The
principal idea is to add to the pure Galerkin formulation (2) the residual multiplied with test
functions � · ∇�:∫

�
(� · ∇yk�+Dk∇yk∇� − fk�) dx

+
∑

K∈Th

�K
∫
K
(� · ∇yk − div (Dk∇yk)− fk)� · ∇� dx=0 ∀�∈Vh

with element-dependent parameters �K . Due to these additional terms, further inter-species
coupling are introduced: The product of chemical source term and SUPG test function, fk� ·
∇�, couple degrees of freedom from di�erent mesh points and di�erent chemical species.
This is the reason why the SUPG stabilization enlarges the number of coupling substantially.
Thus, non-standard �nite element stabilization techniques are highly relevant for reactive

�ow computations. In this work, we document on the use of local projection stabilization
techniques in order to overcome the limitations of SUPG techniques. In addition to the robust
treatment of convective terms this technique stabilizes the sti� pressure–velocity coupling for
equal-order �nite elements.
Furthermore, we use residual-driven a posteriori mesh re�nement, fully coupled defect-

correction iteration for linearization, and optimal multigrid preconditioning. The potential of
automatic mesh adaptation together with multilevel techniques is illustrated by 3D simulations
including detailed reaction mechanisms for laminar methane combustion.
We start in Section 2 with the description of the stabilization for incompressible �ows with-

out chemistry and address some aspects of implementing this method. A theoretical analysis
of LPS stabilization can be found in References [7–9]. In the review article Reference [11] a
comparison with residual-based and edge stabilization is given. In order to document on the
order of the proposed �nite element method we make a numerical comparison with a standard
SUPG method.
In Section 3 we extend the discretization to reactive �ows. Emphasis is given on the treat-

ment of the preconditioner using problem-adapted sparse block matrices. The matrix structure
is presented in more detail in Section 4.
Finally, we document in Section 5 on the simulation of a 3D laminar methane burner

including 15 chemical species.

2. NAVIER–STOKES

In this section we will discuss stabilization techniques for the Navier–Stokes equations for
velocities v and pressure p:

div v=0

��v+ (v · ∇)v+∇p=f
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984 M. BRAACK AND TH. RICHTER

These two variables are sampled together in the vector u := {p; v}. By û we denote an
extension of non-homogeneous Dirichlet conditions into the domain �.

2.1. Variational formulation for Navier–Stokes

We use the usual notation L2(�) for the space of square-integrable functions in �, and
H 1(�) for the Sobolev space of functions with �rst derivatives in L2(�). The solution is
sought in the space û + X , where X is a functional Hilbert space considered as a prod-
uct of Hilbert spaces for each component, L2(�)×H 1(�)d+1+s, where we denote by d the
spatial dimension and by s the number of chemical species, and with standard modi�ca-
tions to build in the boundary conditions and probably restrictions on the mean of the
pressure.
With the bilinear form given by

a(u)(’) :=
∫
�
div v� dx +

∫
�
(�∇v∇�+ (v · ∇)v� − p div�) dx (3)

together with appropriate boundary conditions, the continuous solution u∈X ful�lls the
equation

a(u)(’)=0 ∀’∈X

2.2. Galerkin formulation on locally re�ned meshes

For the discretization we use a conforming equal-order Galerkin �nite element method de�ned
on quadrilateral (hexahedrals in 3D) meshes Th= {K} over �, with elements denoted by K .
The mesh parameter h is de�ned as a elementwise constant function by setting h|K = hK ,
where hK is the diameter of K . In order to ease the mesh re�nement we allow the element
to have nodes, which lie on midpoints of faces of neighbouring elements. But at most one
such hanging node is permitted for each face.
The discrete function space V (r)

h consist of continuous, piecewise polynomial functions of
(so-called Qr-elements) for all unknowns,

V (r)
h = {’h ∈C(�);’h |K ∈Qr(K)∀K ∈Th} (4)

where Qr(K) is the space of functions obtained by transformations of (iso-parametric) poly-
nomials of order r in each spatial direction from a �xed reference unit element K̂ to K . For
a detailed description of this standard construction, see Reference [12] or [13].
The case of hanging nodes requires some additional remarks. There are no degrees of

freedom corresponding to these irregular nodes and the value of the �nite element function is
determined by pointwise interpolation. This implies continuity and therefore global conformity.
For implementational details, see, e.g. Reference [14].
Additionally, we use patch-structured meshes. By a ‘patch’ of elements, we denote a group

of elements (that is eight hexes in 3D), which have a common father-element in the coarser
mesh T2h. Figure 1 gives an example for these patch structures for a quadrilateral and a
triangular 2D mesh. Obviously, every mesh can be transformed into a patch-structured mesh
by one global re�nement. Alternatively, a construction of the patches by agglomeration of
elements is possible in most cases.
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Figure 1. Quadrilateral and triangular mesh with patch structure.

There are two reasons to restrict to this patch-structured meshes:

1. Di�erent function spaces on the same mesh can be employed. Similar to (4) we de�ne
the space of continuous, piecewise polynomial functions of the same degree but on the
coarse mesh T2h,

V (r)
2h := {’h ∈C(�);’h|K ∈Qr(K)∀K ∈T2h}

This function spaces is a subset of the previous one, V (r)
2h ⊂V (r)

h . The stabilization tech-
niques described in the next sections will use the interpolation operator I (r)2h : V

(r)
h → V (r)

2h
into this coarser space.

2. On the patched meshes we can also establish a function space with higher polynomial
degree 2r:

V (2r)
2h := {’h ∈C(�);’h|K ∈Q2r(K)∀K ∈T2h}

The interpolation into this function space I (2r)2h :V (r)
h → V (2r)

2h is used during error esti-
mation for local recovery. Using super-convergence arguments, we expect the di�erence
between the solution and this higher-order interpolation to be a good approximation to
the error: ‖I (2r)2h uh −uh‖K ≈ ‖u−uh‖K . For more details on this kind of a posteriori error
estimation we refer to Reference [3].

Since we take for each component of the system the spaces V (r)
h (with standard modi�cations

for Dirichlet conditions), the discrete space Xh is a tensor product of the spaces V (r)
h . The

discrete Galerkin solution uh ∈ û+ Xh for a �nite-dimensional subspace Xh ⊂X reads:

uh ∈ û+ Xh : a(uh)(’)=0 ∀’∈Xh (5)

The formulation (5) is not stable in general due to the following two reasons: (i) violation of
the discrete inf–sup (or Babuska–Brezzi) condition for velocity and pressure approximation
and (ii) dominating advection (and reaction). Both issues will be addressed in more detail in
the following.

2.3. Drawbacks of residual-based methods

The classical streamline di�usion (SUPG) stabilization for the incompressible Navier–Stokes
problem, introduced by Brooks and Hughes [1], stabilizes the convective terms. Johnson and
Saranen [2] presented an additional pressure stabilizing (PSPG) term in order to allow equal-
order �nite element approximations of velocity and pressure. Drawbacks of these techniques
are basically due to the strong coupling between velocity and pressure in the stabilizing
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terms and the non-trivial construction of e�cient algebraic solvers. The treatment of time-
dependent problems requires the usage of space–time elements. Furthermore, the numerical
e�ort for setting up the stabilization terms is very high, mainly due to the presence of second
derivatives. For the Navier–Stokes equations the stabilized form (3) with SUPG=PSPG reads

ah(u)(’)= a(u)(’) +
∑

K∈Th

∫
K
(−��v+ (v · ∇)v+∇p)(�K∇�+ �K(v · ∇)�) dx (6)

with elementwise constant parameters �K and �K depending on the local balance of convection
and di�usion. Numerical studies on the accuracy as well as the robustness of the solver will
be presented later in this work.
In the next section we present an alternative stabilization technique �rstly introduced for

the Stokes system in Reference [7] and extended to the Oseen system in Reference [9] which
circumvents most problems connected to residual-based stabilization methods.

2.4. Stabilization by local projection

The bilinear form for the Navier–Stokes equations using local projection stabilization is of
the form:

uh ∈ û+ Xh : a(uh)(’) + sh(uh)(’)=0 ∀’∈Xh (7)

with a(uh)(’) de�ned in (3). The term sh(uh)(’) accounts for the saddle-point structure of
the velocity and pressure coupling and for the convective terms.
In order to de�ne sh(·)(·) we use a �uctuation operator by the di�erence of the identity

and the previously introduced nodal interpolator I (r)2h :

�h : Vh → Vh; �h� := � − I (r)2h �

With this notation, the stabilization term added to the Galerkin formulation for an equation
of type (3) is symmetric and reads

sh(uh)(’)=
∑

K∈T2h

{
�K

∫
K

∇�hph ∇�h� dx + �K

∫
K
(vh · ∇)�hvh(vh · ∇)�h� dx

}
(8)

where the parameters �K ; �K are chosen patchwise constant depending on the local balance of
convection and di�usion:

�h|K := �0h2K
6�+ hK‖�‖∞; K

Here, the quantity ‖�‖∞; K is the maximum of vh on the element K . The parameter �0 is a
�xed constant, usually chosen as �0 = 0:5. The elementwise parameter �K is chosen in the
same way, with some constant �0, again usually set to �0 = 0:5. Note, that �h vanishes on
V2h, and therefore, the stabilization vanishes for test functions of the coarse grid ’∈V2h.
For a stability proof and an error analysis for the Stokes equation we refer to Reference [7].

The proposed stabilization is consistent in the sense that the introduced terms vanish for h → 0.
In contrast to the residual-based stabilization term (6) no additional couplings between

pressure and the velocity are introduced. The stabilization of convection and of the pres-
sure is completely separated. Furthermore, no second derivatives are needed to assemble the
stabilization terms. Comparisons between both types of stabilization will be given later.
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Figure 2. Patch structure of elements and nested test functions for local projection.

2.5. Implementation of local projection stabilization for r=2

The application of the projection operator is based on the nested con�guration of the function
spaces Vh and V2h and is performed on the algebraic level with help of a local matrix vector
multiplication. In order to illustrate the principles, we �rst discuss the 1D case. The 2D and
3D test functions are assembled as tensor products of the 1D functions.
For quadratic elements (r=2), the 1D test functions for a patch P and the two elements

K1; K2 ⊂P are shown in Figure 2. While we have Ki ∈Th, the patch P itself is a element in
the coarser mesh P ∈T2h. To assemble the stabilization term (8) on the patch P one has to
arrange �uctuations, e.g. �hp=ph − I (r)2h ph. We express ph|P in terms of the standard nodal
basis functions �1; : : : ; �5 and corresponding nodal values:

ph|P= 〈P;�〉 :=
5∑

i=1
Pi�i

where P=(P1; : : : ; P5) stands for the vector of nodal values and �=(�1; : : : ; �5) for the vector
of basis functions. Due to linearity, �h has to be applied on the test functions � only:

�hph|P= 〈P;K�〉
with a matrix K ∈R5×5. Assuming the numeration of the basis functions according to Figure 2,
their interpolation I (2)2h vanishes for i=2; 4:

I (2)2h �2 = I (2)2h �4 = 0

The interpolation of the remaining nodal functions, I (2)2h �j, j=1; 3; 5, can be represented as
a matrix multiplied with the �ne grid basis:

⎛
⎜⎜⎝

I (2)2h �1

I (2)2h �3

I (2)2h �5

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 3=8 0 −1=8 0

0 3=4 1 3=4 0

0 −1=8 0 3=8 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

�2

�3

�4

�5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Thus, on a patch P, the matrix K is given by

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −3
8

0
1
8

0

0 1 0 0 0

0 −3
4

0 −3
4

0

0 0 0 1 0

0 −1
8

0 −3
8

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since the projection is always performed on the reference element, this matrix only depends
on the degree of the basis functions. A similar matrix can be constructed for linear �nite
element spaces or for higher-order spaces.
For the transition to higher spatial dimensions, we assemble the test functions as tensor

products of the 1D functions �i. In two dimension, with

�i; j(x; y) := �i(x)�j(y)

and the vector �2D = (�i; j), we get the following representation of the �uctuation operator:

(K2D�2D)ij=(K�)i(K�)j=
∑
k; l
�i; k�j; l�k; l

with K2D ∈R52×52 .
Let us consider the pressure stabilization term

∫
K ∇�hph∇�h� in (8) with a basis function

�=�i. This term turns out to be∫
K

∇�hph ∇�h�i=
∫
K
〈P;∇K2D�〉(∇K2D�)i dx

We recapitulate that K2D is the �xed matrix given above, P is the vector of nodal values of
the discrete pressure ph on the patch K , and � is the vector of nodal basis functions on P.
The other terms in (8) are obtained analogously.
The application of the projection operator enlarges the matrix stencil due to the interpolation

into the coarse function space V2h. In three spatial dimensions using triquadratic �nite elements,
one patch includes 2744 matrix couplings instead of 512 couplings necessary for the Galerkin
part in one element. However, it is possible to use another projection operator in the matrix of
the linear system. This slightly reduces the Newton convergence but substantially minimizes
the memory usage. Within the matrix we use as projection operator the �uctuations with
regard to a polynomial space of lower degree on the same mesh:

�̃hph := ph − I (1)h ph

This projection forms another local projection method itself. Although this method is favourable
in terms of e�ort and memory usage, it cannot be recommended in general for computing the
residuals, since the accuracy of the resulting scheme is reduced by one order. Here, we use
this projection only as a cheap preconditioner.
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Actually, the local projection method is a large set of techniques. The de�nition of the
operator �h via the interpolation to the coarse space V (2)

2h is one possibility. Another type of
local projection is the stabilization term

�K

∫
K
(∇ph − ∇ph)∇� dx

where ∇ph is a local projection of the pressure gradient to a polynomial of order r − 1 onto
a patch P ∈T2h. The stabilization of the convective term is analogous.

2.6. Numerical study for Navier–Stokes

In this section we perform a numerical study in 2D to examine the accuracy of the local
projection stabilization compared to the SUPG=PSPG method. As a test case we use the
well-established benchmark problem ‘Flow around a cylinder’ described in Reference [15].
A circular obstacle is embedded into a channel. Quantity of interest is the drag coe�cient on
this obstacle in the �ow domain. On 	in a parabolic in�ow pro�le is given with a maximum
velocity of 0:3m=s, which yields the Reynolds number Re=20. The value of interest is the
drag de�ned by

cD =C
∫
S

(
�
@vt
@n

ny − pnx

)
ds

with a constant C. Instead of using this boundary integral for the evaluation of the drag,
the integral can be transformed into an integral over the whole domain (see Reference [16])
for details. Using this alternative evaluation method, the accuracy is enhanced to O(h4) for
biquadratic elements.
In Figure 3 the error for the local projection stabilization is plotted and compared with

SUPG=PSPG. The parameters �0 and �0 are chosen as 0:5 in both cases. Considering this
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Figure 3. Accuracy of the drag evaluation on a sequence of globally re�ned meshes. The stabilization
parameters �0 and �0 are chosen as 0:5. The solid line belongs to the local projection method, the

dashed line to the residual method, the dotted line illustrates fourth order convergence.
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Figure 4. Accuracy of the drag evaluation on a mesh with 10 240 elements with regard to the choice
of the stabilization parameter �0. �0 is chosen as 0:5. The solid line belongs to the local projection

method, the dashed line to the residual method.

Table I. Mean convergence rate of multigrid solver with biquadratic �nite
elements. Upper table: local projection stabilization; lower table: PSPG=SUPG.

Missing numbers indicate divergence of the linear solver.

Elements �=0:01 �=0:05 �=0:1 �=0:5 �=1 �=2

LPS
2560 0.125 0.063 0.071 0.112 0.152 0.260
10 240 0.503 0.062 0.066 0.102 0.128 0.224

PSPG=SUPG
2560 0.356 0.243 0.227 0.357 0.604 —
10 240 0.761 0.250 0.204 0.461 — —

‘good’ choice of the parameters—which generally depends on the speci�c problem—both
stabilization techniques result in a comparable accuracy.
In Figure 4 the error on two sequenced meshes with regard to the choice of the parameter

�0 is shown. While the local projection method produces good results for the drag coe�cient
on all choices of �0, the residual method heavily depends on the correct choice. Regarding
the accuracy, the in�uence of the parameter �0 is negligible for both settings. This is due to
the low Reynolds number in this benchmark problem.
However, even more dramatic than the dependence of the accuracy on �0 is the ro-

bustness of the linear solver w.r.t. the choice of the parameters. All linear problems are
solved with a geometric multigrid solver based on ‘global coarsening’, see Reference [17]
or [18] for details. In Table I we list convergency rates of this multigrid solver. For
‘wrong’ choices of �0 SUPG=PSPG stabilization leads to a breakdown of the linear
solver.
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3. REACTIVE FLOW PROBLEMS

3.1. Governing equations for reactive �ow problems
As before, we denote the velocity by v and the pressure by p. Additionally, we have the
temperature T and the density 	. Furthermore, we have ns species mass fractions denoted by
yk , k=1; : : : ; ns. The basic equations for reactive viscous �ow express the conservation of
total mass, momentum, energy, and species mass in the following form:

@t	+ div (	v)=0 (9)

	@tv+ 	(v · ∇)v − div 
+∇p= g	 (10)

	cp@tT + 	cpv · ∇T − div �∇T =−
ns∑

k=1
hkmk!̇k (11)

	@tyk + 	v · ∇yk + divFk =mk!̇k k=1; : : : ; ns (12)

where g is the gravitational force, cp is the heat capacity of the mixture at constant pressure,
and for each species k, mk is its molar weight, hk its speci�c enthalpy, !̇k its molar production
rate. We consider Fick’s law for the species mass di�usion �uxes Fk driven by gradients of
mass fractions, see Reference [19]:

Fk =−	D∗
k ∇yk; k=1; : : : ; ns (13)

The viscous stress tensor 
 is given by


=�(∇v+ (∇v)T − 2
3 div vI)

The di�usion coe�cients D∗
k , the thermal conductivity � and the viscosity � are functions of y

and T . The conservation equations (9)–(12) are completed by the ideal gas law for mixtures

	=
pm
RT

(14)

with the universal gas constant R=8:31451, and mean molar weight m given by

m=
(

ns∑
k=1

yk

mk

)−1

For more details on the derivation of the equations and the chemical reactions, see
Reference [20].
Equations (9)–(12) are linearly dependent because the species mass fractions sum up to

unity and
ns∑

k=1
Fk =

ns∑
k=1

mk!̇k =0

Therefore, we omit one equation in (12), say that of the last species, and set with s := ns −1,

yns := 1−
s∑

i=1
yi

The system of equations is closed by suitable boundary conditions depending on the speci�c
con�guration to be considered: for temperature and species, we allow for non-homogeneous
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Dirichlet and homogeneous Neumann conditions. For the velocity v, we allow for non-
homogeneous Dirichlet conditions at the in�ow and rigid walls, and for the natural out�ow
boundary condition.
In order to account for compressible �ows at low Mach number, the total pressure is split

in two parts

p(x; t)=pth(t) + phyd(x; t)

While the so-called thermodynamic pressure pth(t) is constant in space, the hydrodynamic
pressure part phyd(x; t) may vary in space and time. Hence, the pressure gradient in the
momentum equation (10) can be replaced by ∇phyd. This is important for �ows at low Mach
number, where phyd is smaller than pth by several magnitudes.
The vector u assembles the variables u := {phyd ; v; T; y1; : : : ; ys} while the density is con-

sidered as a coe�cient determined by the ideal gas law

	=
(pth + phyd)m

RT
(15)

3.2. Stabilized �nite elements for reactive �ow

We de�ne the semilinear form for stationary solutions of (9)–(14):

a(u)(’) :=
∫
�
div (	v)� dx +

∫
�
(	(v · ∇)v�+ 
∇� − phyddiv� − g	�) dx

+
∫
�

(
	cpv · ∇T+ �∇T ∇+

ns∑
k=1

hkmk!̇k
)
dx

+
s∑

k=1

∫
�
(	v · ∇yk�k − Fk∇�k − mk!̇k �k) dx

for test functions ’= {�; �; ; �1; : : : ; �s}.
As previously discussed for Navier–Stokes, this semilinear form is not stable for equal-

order �nite elements. Considering the full set of reactive �ow equations further di�culties
occur due to the additional convective terms. As already mentioned in the introduction, SUPG
applied to reactive �ows will introduce strong couplings between di�erent chemical species.
The expansion of the local projection method to reactive �ows is straightforward. For

the full reactive �ow system the stabilization term (8) consists of the previously introduced
stabilization for pressure–velocity and convection stabilization for all convective terms:

sh(uh)(’)=
∑

K∈T2h

∫
K

[
sp(uh)(�) + sv(uh)(�) + sT (uj)( ) +

ns∑
k=1

sk(uh)( k)
]
dx

sp(u)(�)= �K(∇�hp) (∇�h�)

sv(u)(�)= �K((	v · ∇)�hv)((	v · ∇)�h�)

sT (u)( )= �K(	v · ∇�hT )(	v · ∇�h )

sk(u)( k)= �kK(	v · ∇�hyk) (	v · ∇�h k)
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The stabilization parameters �K ; �kK depend again on the local balance of convection and
di�usion of the temperature and the species, respectively.
Let us shortly compare the further couplings introduced by this technique. On the one hand,

the stencil becomes larger due to the projection onto patches. On the other hand, and this
is the crucial point for reactive �ows, the stabilization does not act on the reactive source
terms mk!̇k . Hence, no further couplings between di�erent chemical species are introduced.
We come back to this point when we discuss the matrix structure of the corresponding linear
systems in a later section.

4. SOLUTION PROCEDURE

The discrete equation system (7) are solved by quasi-Newton iteration with an approximate
Jacobian J =(Jij) of the sti�ness matrix with block entries,

Jij ≈ a′(un)(’j; ’i)

of size n= s+d+2. The corresponding linear systems are solved with a multigrid algorithm.
Due to the blocking of all the components of the system an incomplete block-LU factorization
can be applied. This accounts for the strong coupling of hydrodynamical variables as pressure,
velocity and temperature with the chemical variables. This linear solver is described in detail
in Reference [18]. Here we focus on the matrix structures because they may become extremely
expensive for large chemical mechanisms.
Let us discuss the memory e�ort for storing a Jacobian with blocks Jij of type⎡

⎢⎢⎢⎢⎢⎢⎣

App Apv ApT Apy

Avp Avv AvT Avy

ATp ATv ATT ATy

Ayp Ayv AyT Ayy

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

Note, that the computational e�ort is aligned to the number of matrix entries. As already
mentioned in Section 1, the biggest part in the blocks Jij is due to the species couplings Ayy,
at least for a large number of species s 
 1. Considering trilinear �nite elements (with the
27-point stencil on tensor grids), the matrix only containing matrix blocks of this type would
have

27(5 + s)2

entries per grid point. In Table II we show the memory necessary for storing one system
matrix in 2D and 3D when a reaction mechanism with s=15 species is used.
The species couplings Ayy are due to various terms:

• For combustion problems, the chemical source terms !̇k usually enforce extremely strong
couplings between di�erent species. However, if the mass matrix in the �nite element
discretization is lumped, these coupling do not appear in o�-diagonal blocks Jij, i �= j.

• Some di�usion laws, as for instance the extended Fick’s law or multicomponent di�usion,
see Reference [21], show o�-diagonal couplings when mass fractions yk are used as
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Table II. Memory needed for storing one system matrix in single precision
and s=15 species in two and three dimensions.

2D 3D

Matrix couplings 9 27
Block size 1849 1936
Elements necessary for ≈ 5% error 10 000 250 000
Memory (single prec.) 634MB 50GB

primary variables. However, the o�-diagonal couplings due to the extended Fick’s law
are usually of minor importance so that they may be neglected in the Jacobian. In this
case, the contribution due to di�usion are diagonal in the blocks Jij. For Fick’s di�usion
law (13) this is the case without modi�cation of the Jacobian.

• SUPG stabilization generate o�-diagonal couplings between species gradients due to the
consistence terms, see discussion in Section 2.3.

In summary, due to the local projection stabilization the matrix blocks can be classi�ed into
two types: into dense diagonal blocks Jii and into sparse o�-diagonal blocks Jij; i �= j. The
diagonal blocks remain of the type (16) while the o�-diagonal blocks Jij, i �= j of the system
matrix are stored in the form

Jij=

⎡
⎢⎢⎢⎢⎢⎣

App Apv ApT

Avp Avv AvT

ATp ATv ATT

Dyy

⎤
⎥⎥⎥⎥⎥⎦

with a diagonal matrix Dyy. Such a block has only (52 + s) entries for three velocity compo-
nents (3D) compared to (5 + s)2 entries of a full block Jii. Using di�erent matrix blocks for
the o�-diagonals, the storage usage reduces to

(5 + s)2 + 26(52 + s)

If we use a reaction mechanism with s=15 species, the memory needed to store a matrix is
a factor

[27(5 + s)2] : [(5 + s)2 + 26(52 + s)]≈ 7:5
smaller than using the standard sparse matrix. Note, that the saving grows with larger reaction
systems. While the Newton residual is kept untouched, the Newton convergence may become
slightly reduced. For these calculations we have assumed the usage of linear �nite elements.
However using quadratic �nite elements, the proportions keep unchanged. For more details
we refer to Reference [10].

5. SIMULATION OF A 3D BURNER

In this section, we apply the proposed methods to the simulation of a 3D methane burner
with trilinear �nite elements. The household burner constructed by BOSCH is an example of
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Inflow CH4, O2, N2

Cooling
boundary condition
for temperature

Symmetric boundary

Formaldehyde
evaluation

Ignition electrode

Lamella

Burner cooling

Seal

Mixing ductNozzle

Lock

condition

Figure 5. Left: sketch of a household burner. Right: computational domain
and considered functional for 3D simulation.

Figure 6. Cut-outs of mesh used to generate the 2D simpli�cation for the household burner.

a burning facility with a 3D laminar stationary �ame, see Figure 5. This burner consists of
several slots, but in contrast to many con�guration, the symmetry is violated due to several
cooling ducts transversal to the lamella. In Reference [22], a 2D approximation was arranged
by neglecting the cooling ducts. With the software GASCOIGNE [23] a parameter study was
carried out in order to obtain information concerning pollution formation under several loads
of the burner, see Reference [22]. However, the in�uence of the cooling ducts could not be
analysed. In this section we perform simulations of a full 3D domain including the cooling
devices.
As a �rst step towards 3D combustion simulations we use the C1 reaction mechanism with

15 chemical species (see Reference [24]). Due to the large number of chemical species, the
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Figure 7. Simulation of the 3D methane burner: (a) vertical velocity; (b) temperature; (c) H mass
fractions; and (d) OH mass fractions.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:981–999



STABILIZED FINITE ELEMENTS FOR 3D REACTIVE FLOWS 997

non-linearities due to chemical kinetics, the sti�ness due to the di�erences in time scales for
the �uid and the chemistry, this problem is much more complex than the corresponding �ow
problem without chemistry.
The sheer size of the problem with lots of chemical species leads to huge matrices, which

already in terms of memory usage make the use of parallel computers inevitable. In addition,
adaptive mesh re�nement is used to further reduce the problem dimension.

5.1. Set-up of numerical study

The 3D simulation where initiated with a prolongation of a 2D simpli�cation. In Figure 6, cut-
outs of adaptively re�ned meshes from this 2D simpli�cation are given. The mesh adaptation
is driven by the dual weighted residual method (DWR) [25]. The meshes are optimized with
regard to the evaluation of the formaldehyde CH2O concentration along a line taking course
in the 3D domain. In the 2D simpli�cations this quantity is presented by the evaluation of
a single point. This evaluation point is highly resolved by the adapted meshes. Further, the
edges of the lamellae are locally re�ned due to the produced singularities in the solution.
In Figure 5 (right) the computational domain including the cooling duct is given. The 3D

simulations are performed on a PC-cluster. Details on the parallel multigrid solver are given in
the PhD project of Richter [26]. As mentioned before, mesh adaption is based on estimating
the line functional. Although acting as an obstacle to the �ow, the cooling duct does not
require relevant mesh adaption, since its boundary is smooth and no chemical reaction takes
place in this area. However, the in�uence of the cooling may not be neglected as we will see
in the following.
For obtaining a stationary �ame in this case, a pseudo-time stepping with 140 iterations

was necessary. The computation on a mesh with 30 928 nodes and 26 680 elements needs 6.5
hours on an Athlon cluster (1.4GHz) with 30 processors.

5.2. Short comparison of the 2D and 3D solutions

In Figure 7, the 3D e�ect due to the cooling tubes are clearly visible. In particular, the �ow
velocity is reduced beyond the cooling tubes and the �ame front becomes less pronounced.
All regarded functionals feature a signi�cant variety in z-direction, and also an overall

discrepancy in comparison to the 2D simpli�cation is observed. In Table III we list the
maximal values of these four components identi�ed in the whole domain for the 2D and the
3D setting. The di�erence in the temperature of about 100K is quite remarkable and aroused
by the cooling device. The lower temperature in the 3D con�guration leads to large di�erences
in all other components (Figure 8).

Table III. Maximal values for the velocity, the temper-
ature as well as the mass fraction of formaldehyde and

HO2 obtained in the 2D and 3D simulation.

2D 3D

Velocity 3:39m=s 2:61m=s
Temperature 2156K 2039K
CH2O 7:1e−3 5:2e−3

HO2 2:3e−4 6:2e−4
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Figure 8. Comparison of 2D and 3D simulations of the household burner. Cross sections of
pro�les of temperature, the velocity in main �ow direction, the mass fractions of formaldehyde,

and HO2-radicals along the z-axis.

Thus, recapitulating the results, the considered con�guration yields real 3D features. Two-
dimensional simpli�cations of the geometry are not justi�able. However, detailed 3D simula-
tions are possible, if one combines e�cient solvers with mesh adaptation and parallelization.
We refer to Reference [26] for more details on the con�guration and a comparison between
the 2D and 3D simulations.
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